STRINGSTRING
amrZ amrZ algU algU fleQ fleQ algR algR algB algB algD algD algZ algZ mucA mucA flgM flgM algC algC gacA gacA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
amrZAlginate and motility regulator Z; Functions as both a transcriptional activator and repressor of multiple genes encoding virulence factors as well as genes involved in environmental adaptation. Plays a role in alginate production via the activation of AlgD which is the first gene in the alginate biosynthetic operon. Regulates also the transcription of genes responsible for type IV pili localization and twitching motility. Mediates transition of P.aeruginosa biofilm infections from colonizing to chronic biofilms through repression of the psl operon. Represses also its own transcription [...] (108 aa)    
Predicted Functional Partners:
algU
Sigma factor AlgU; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor regulates genes such as algD, involved in alginate biosynthesis.
   
  
 0.893
fleQ
Transcriptional regulator FleQ; AAA+ ATPase enhancer-binding protein that acts as a transcription regulator and plays a role in the modulation of mucin adhesion and flagellar gene expression. In addition to flagella genes, regulates also expression of biofilm-related genes. Functions as a transcriptional repressor in the absence of c-di-GMP and as an activator when c-di-GMP is present.
      
 0.887
algR
Alginate biosynthesis regulatory protein AlgR; Positive regulator of the algD gene, which codes for a GDP- mannose dehydrogenase, a key step enzyme in the alginate biosynthesis pathway.
   
  
 0.884
algB
Two-component response regulator AlgB; Member of the two-component regulatory system AlgB/KinB involved in regulation of alginate biosynthesis genes. Positive regulator of the alginate biosynthetic gene AlgD.
      
 0.881
algD
GDP-mannose 6-dehydrogenase AlgD; Catalyzes the oxidation of guanosine diphospho-D-mannose (GDP-D-mannose) to GDP-D-mannuronic acid, a precursor for alginate polymerization. The alginate layer causes a mucoid phenotype and provides a protective barrier against host immune defenses and antibiotics.
   
  
 0.880
algZ
Alginate biosynthesis protein AlgZ/FimS; Product name confidence: Class 1 (Function experimentally demonstrated in P. aeruginosa).
   
  
 0.812
mucA
Anti-sigma factor MucA; Negative regulator of the sigma factor AlgU. Plays a role in the differentiation of P.aeruginosa into the alginate-producing form. Inactivation of mucA causes a switch from the non-mucoid to mucoid state resulting in constitutive expression of alginate biosynthetic genes.
   
  
 0.775
flgM
FlgM; Class 1: Function experimentally demonstrated in P. aeruginosa.
   
  
 0.715
algC
Phosphomannomutase AlgC; Highly reversible phosphoryltransferase. The phosphomannomutase activity produces a precursor for alginate polymerization, the alginate layer causes a mucoid phenotype and provides a protective barrier against host immune defenses and antibiotics. Also involved in core lipopolysaccaride (LPS) biosynthesis due to its phosphoglucomutase activity. Essential for rhamnolipid production, an exoproduct correlated with pathogenicity. Required for biofilm production. The reaction proceeds via 2 processive phosphoryl transferase reactions; first from enzyme-phospho-Ser-1 [...]
      
 0.700
gacA
Response regulator GacA; Positively controls the production of the autoinducer N- butyryl-homoserine lactone and the formation of the virulence factors pyocyanine, cyanide, and lipase.
   
  
 0.625
Your Current Organism:
Pseudomonas aeruginosa
NCBI taxonomy Id: 208964
Other names: P. aeruginosa PAO1, Pseudomonas aeruginosa PAO1, Pseudomonas sp. PAO1
Server load: low (28%) [HD]